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ABSTRACT 

Acceleration techniques for  discretization algorithms used  in the  

approximate solution of nonlinear operator equations are considered. 

Practical problems arising in the solution of large systems of nonlinear 

algebraic equations are discussed. 

These techniques are applied to  the  approximate solution of mildly non- 

l inear ell iptic equations by finite differences, and severa l  numerical examples 

are given. 



ACCELERATING THE CONVERGENCE OF DISCRETIZATION ALGORITHMS 

Victor Pereyra 

Introduction 

In a recent paper ( Pereyra [ 19661 ) we have developed the  theory of t h e  

method of deferred corrections. 

accelerate  the  convergence of discrete approximations to solutions of certain 

types  of nonlinear operator equations in Banach spaces .  

Applying th i s  procedure we were able  to 

In Section I of th i s  paper w e  present another method for accelerating 

This is the  generalization of the well-known Richardson' s convergence. 

"deferred approach to the  l i m i t "  ( Richardson [ 19101 ) and we call it t h e  method 

of success ive  extrapolations. 

In Section 11 we state the principal resu l t s  about the l inear deferred 

correction method studied in our earlier paper. 

acceleration procedures is based on the  general  presentation given by 

Stetter [ 19651 

discretization error in th i s  kind of problem. 

The ana lys i s  of both types  of 

for t h e  discussion of the  asymptotic behavior of the  global 

When applying t h e s e  procedures t o  boundary value problems it is necessary  

to solve large systems of nonlinear algebraic equations.  Recent papers by 

Bers [ 19531, Greenspan and Parter [ 19651, Ortega and Rockoff [ 19651, and 

Schechter [ 1964 , have considered generalized Gauss-Seidel or relaxation 

methods for this .  On the other hand, one c a n  apply the  standard Newton 
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method; t h i s  requires t he  solution of a large system of l inear  equations at 

each  step, which may in  turn require an  i terative process.  

be outer and inner  i terations,  and while both kinds of i teration have been 

studied extensively ( cf. Kantorovich and Akilov [ 19641, Varga [ 19621 ) little 

is known about their  combined behavior. 

Thus there  wi l l  

Bellman and Kalaba [ 19651 ( p. 118) and Ortega [ 19661 have pointed out 

tha t  it is an  open problem to decide how accurately to solve the  l inear  

equat ions at each Newton step in  order to have an overall  optimal method. 

In Section I11 we give a partial  answer to th i s  question. We prove there  a 

theorem similar to Mysovskii '  s theorem ( cf. Kantorovich and Akilov [ 1964) on 

Newton' s method which g ives  a constructive ( a n d  quite simple) procedure 

for interrupting t h e  inner i terations while still preserving the  quadratic 

convergence of t h e  outer iteration. 

r e su l t s  using th i s  procedure. 

In the  Appendix we give some numerical 

While it is always interesting t o  have means for accelerating the conver- 

gence of an  approximate method there  are problems for which t h i s  is not only 

interesting but essent ia l .  This is the case with boundary value problems 

for partial  differential equations. Many of t h e  relevant points on the practical 

application of finite differences and accelerat ion techniques t o  l inear  partial 

( *I differential  equations have been made in  an  excel lent  paper by Fox [1950] . 
It  is only i n  t h i s  and other papers by Fox and h i s  collaborators i n  which it is 

possible  to find any significant information at all about t he  numerical perfor- 

mance of acceleration procedures in  multidimensional Problems. The best 

* We are grateful to  Professor L. Fox for cal l ing our attention t o  th i s  reference. 
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reference to  this  work is Fox [ 19621. Most  of Fox' s quali tative comments 

apply without e s sen t i a l  changes t o  the  nonlinear case we consider in 

sect ion IV. There is, of course, t he  added complication of having t o  solve 

nonlinear difference equations and we provide a l so  a quantitative ( asymptotic) 

analysis .  

In section IV we d i s c u s s  in de ta i l  the application of the different acce l -  

eration techniques t o  the solution of mildly nonlinear e l l ipt ic  equations. 

numerical solution of t h i s  type of problem by means of finite differences h a s  

been studied by Bers [ 19533, and more recently by Parter [ 19651, and 

Greenspan and Parter [ 19651 Other numerical resu l t s  are  reported in 

Greenspan [ 19641 

The 

and Greenspan [ 19651 

In section V we present some of the  numerical resu l t s  obtained in 

s o l  ving mildly nonlinear e l l ipt ic  equations. 

poses .  On one hand they show the actual  performance of the  methods as 

applied t o  non-trivial problems. On the  other hand they provide a way for 

comparing the  two c l a s s e s  of techniques,  and some comments on th i s  are 

offered in section V I .  

These examples serve two pur- 

We are indebted t o  Professor Donald Greenspan and Professor Colin Cryer 

of t he  Mathematics Research Center for their  continuous interest ,  support, 

and valuable suggest i ons. 
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I. Acceleration techniques for nonlinear problems. 

1. In this  paper we will  be dealing with the numerical solution of nonlinear 

operator equations by means of discretization algorithms 

be interested in  the discussion of techniques for accelerating the convergence 

of such algorithms as the  mesh s i ze  approaches zero. 

In particular we  will  

2. A frequently used example of this  family of problems is the two point 

boundary value problem. We treat  this  problem in  detai l  i n  order to make the 

s e n s e  of the generalization to operator equations more comprehensible. Let 

a < x < b  - -  y" - f ( x , y )  = 0 

y ( a )  - cy = 0 ( 1.1) 

Y(b) - P = 0 7 

where f > O .  
Y 

We assume that f is as smooth as is necessary  to ensure the  validity of 

all our expansions. In this  case the continuous problem (1.1) has a unique 

solution y( x) ( cf. Henrici [ 19621) In operator notation we can write ( 1.1) as: 

F( Y) = 0 ( 1.1') 

where F:D + E ,  and D, E are  contained i n  the  Banach spaces C( 2, [ a ,  b] and 

C [a ,  b] X R 2  , respectively. 

3 .  A very simple discrete  version of ( 1.1) , which allows u s  to obtain 

approximate values of y( x) at points x i ,  is given by: 

1 5  i 5 n-I -2 2 h 6 Yi - f( xi,Yi) = O 

Y o -  a = o ,  

Y n - P  = o ,  

where 
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x. 1 = a t i h  , ( i  = O , l , . " ' , n )  , 
h = ( b - a ) / n  , 

and where 

6 2 Y. = Yitl - 2y t Yi - 1 

This is a system of n - 1  nonlinear equations which h a s  to 

If a solution exists, we expect Y - y( xi) to  be s m a l l  the  Yi . 
i 

In operator notation we can  write ( 1.2) as  

Q h ( Y )  = 0 

be solved for 

i n  some sense .  

( 1 . 2 ' )  

4. For any sufficiently differentiable function u( x) it is e a s y  to  show 

tha t  the  expansion 

h -2 6 2 u(xi)  - f ( x . , u ( X . ) )  u"(x.)  - f ( X i , U ( x i ) )  -t 
1 1 1 

( 'jt2)( xi) h2j  t O(h 2 N t 2  ) 
j =1 

( 1.3) 

is valid.  This asymptotic expansion in  powers of h shows the relationship 

between the  continuous operator i n  ( 1.1) and the discrete  operator i n  ( 1.2) . 
The expression hw2 62u( x.) -u"( xi) is sometimes cal led the local 

1 

discret izat ion error or truncation error. 

For the development of our theory, the ex is tence  of such a relationship 

is essent ia l .  In order to formalize this statement we have to introduce some 

new operators.  These a re  the linear, bounded operators A h j  A: which 

re la te  t he  continous and discrete  spaces :  

D 

h 
D- 

h 

. 
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Then the  generalization of ( 1. 3) reads: 

For each Y E  D 

(1 .3 ' )  

where the  F. are given operators, and the  p are rational, positive numbers 

satisfying 

1 j 

0 < P1 < P2 < ' "<PNtl  

F and gjh will be assumed to be at least twice  FrLchet differentiable, and 

in  general, the spaces  E, D, E D can  be arbitrary Banach spaces. h' h 

5. Let  us  assume for a moment tha t  ( 1.1' ) and ( 1.2' ) have unique 

solutions y, Y( h)  . In th i s  case we can  define 

e ( h )  = Y ( h )  - Ahy ( 1.4) 

t h e  qlobal discretization error. 

Under fairly general conditions Stetter [ 19651 h a s  proved tha t  i f  ( 1. 3'  ) 

holds (wi th  F .  independent of h )  then also 
I 

e ( h )  = A  z e , h P j + O ( h  N 'Nt1 
h j =1 3 

( 1.5) 

where the  e ,  E D , and are independent of h . 
problem ( 1.1) with the  discret izat ion ( 1.2) .  

In particular t h i s  holds  for 
1 

One of the main assumptions in  Stetter '  s theorem is tha t  t he  operator 

be stable.  By th i s  is meant tha t  for any e, V E  Dh there  e x i s t s  a constant 'h 

K, which is independent of e and h ,  such tha t  

II e II 5 K II a h( V) e II , ( 1.6) 

h '  where is the Frkchet derivative of 
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6.  The e .  depend, in general, on the  exact solution of ( 1.1' ) , which 
3 

Nevertheless,  the  knowledge that  such an expansion is of c o u r z  unknown. 

exists is enough to allow us,  in principle, to improve upon t h e  bas i c  approx- 

imate solution Y( h) 
I .  

We say that the method (1. 2' ) is converqent for h - 0 i f  

e ( h )  = o(1) , 
and that  it is convergent of order p if 

e ( h )  = O(hp) . ( 1.7) 

It is wel l  known that  (1. 2) is convergent of order 2 We will  now s e e k  

methods for increasing the order of convergence, starting from the  bas ic  method 

( 1.2' ) and assuming the properties ( 1. 3' ) , ( 1,5) and ( 1. 7) , with p equal  to 

t h e  p1 of ( 1 . 3 ' ) .  

i.e. that  for each  V V E D there exists a l inear operator M (  V V ) such that  

We will  assume that  @h h a s  the  mean value property, 

1' 2 h '  1' 2 

and 
1 

M(V1,V2) -ah(V) = o( 1) for V V - + V  1' 2 

Of course,  in general, M does  not have to be  unique. Finally we also assume 

tha t  there is an  M of t h i s  kind which is stable.  

7. A well  known technique that goes back, a t  least ,  to a paper by 

Richardson [ 19101 is that of extrapolation to the l i m i t .  

The idea is that  if we know the error of ( 1. 2' ) to behave l ike ( 1.5) then, 

by computing several  approximate solutions for different steps h ,  and com- 

bining them appropriately we can obtain a much more accurate solution. 

For instance one could compute approximate solutions of (1.2)  with 

h = hl, 2-lh1, . . 
#687 -7- 
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grid points of the coarsest  mesh ( h  = h  ) belong to all the other grids. 1 I t  is  

a t  these  points that  we will be able  to obtain a more precise  solution. 

The name of Romberg is usually assoc ia ted  with the  scheme used in  

performing successive extrapolations. To be  precise,  i n  1955 Romberg 

presented a scheme for the numerical integration of continuous functions, 

having as  a basic  method the trapezoidal rule and improving accuracy by 

success ive  extrapolations. There is no conceptual change in  the more 

general situation occurring in  the present context. Among the  authors who 

have recently contributed to extend the  domain of applicabili ty of this  method 

we  can  mention the names of Bauer, Rutishauser, Stiefel, Gragg, Bulirsch, 

Stoer, and Laurent. Reference to their work can  be  found i n  Gragg [ 19651. 

The only attempt to set up a general  theory is due to Stetter, as  we  have 

mentioned before. However, even i n  Stetter's paper it i s  left implicit how 

the general success ive  extrapolation procedure is to be applied to functional 

equations. Consequently, we feel justif ied i n  using s o m e  space  in  order 

to state precisely the method of success ive  extrapolations for functional 

equations (S. E. for short) . 
( *) 8. To do so we assume that we are  solving approximately equation 

( 1.1') by means of ( 1. 2') , that  ( 1.1') has  a unique solution, and that ( 1.2') 

has  a unique solution that we  can  compute for any h i n  discussion.  

For any  given N and hl > h2 > . . . >hN > 0 , we assume that  there exists 

* A summary of the r e s u l t s  of § 8 through 4 11 and some of the  numerical resul ts  
at t he  end of th i s  paper have been presented to the  SIAM National Meeting 
of May 1966 in Iowa City. 
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- Dhl , such that:  
j 

Dh a family of operators +h ( j = 1, ~. . , N )  $h : 
j j 

for each  V E  Dh , $h ( V )  = ah ( V) ( 1.8) 
j j 1 

where V is any element of A-l ( V )  , and 11 $ 11 < 1. These operators will  

be well  defined i f  

h h -  
j j 

for each v , v E D, and j = 1,. . .,N , 1 2  

A V = A  v implies A v = A  v 
h .  1 h .  2 hl 1 hl 2 3 3 - 

If t he  D are finite dimensional  subspaces  of D such tha t  D = D , 
h 3 h j  j 

and the A are projections, then by taking + = Ah these  properties 
h h 

j j j 
( *) are  equivalent to  saying tha t  the $ form a Schauder bas i s  for D .  

h j  
If for problem ( 1.1) , (1. 2)  we choose $ as the l inear operator which h 

j 

maps V = ( V  , V . . . ,Vn 2j-1) into the vector W of D defined by 
1 hl 

0 1’ 

w 5 ( V  , v  j- l , . . .  V 
2 

j-1, Vn 2j-l) , then we see that  all the conditions ( nl-1) 2 1 0 

are  fulfilled. 

9. Now we can eas i ly  prove the following 

L e m m a  1.1 If U( h . )  

h a s  a n  expansion (1.5) up to  the order p 

is an approximate solution of order p and e( h) u t 1  - 1 

then 
u y  - 

) -  
paS1 Pi 

% U ( h . ) - A  U - A  hj  e = O ( h  i j hl 1 i = l  
1 

j 

* A sequence of finite dimensional subspaces D of a Banach space  D and n ~. 

n t l  ’ projections P : D -D is called a Schauder bas i s  for D if  D c D n n n 
.__ 

K D n  = D ,  IIPnII M y  and P P = P  for n 2 m .  m n  m 

X687 - 9- 



Proof: 

From (1.8)  i t  follows tha t  

A u =  L/J ( A  u) 
hl h j  h j  

( 1.10) 

Thus, the 2 f t  hand s ide  of ( 1.9) can  be written as: 

1 

and because of our hypotheses 

5 - Ile(h 

a s  we wanted to prove. 

this  is in  norm 

10. Now we can s t a t e  t he  S.E. method precisely. Let  u s  first define 

( O )  = + h  U(hi) ( i  =1,2, .  . . , N)  
i U i  

r = ki /hi , ( 1. 11) 1 it1 

( 0 )  = 1, ( 0 )  = I ,  7 ( 0) = 1  ( v , i  = l , . . e , N ) .  
gv,  i Pv, i v, i 

By Lemma 1.1 we have tha t  

( 1" 12) 

With th i s  we can recursively define 

#687 



( 1.13) 

The next theorem will show that  an expansion similar to (1.12) is valid for 

T! k, 2 A u - U'k), and that  t h i s  expansion s ta r t s  with u = k t 1. 

Theorem 1.2: 

rates r 

1 hl i 

With the  definitions and hypotheses above, and i f  N and the  

are qiven, then for h. 4 0 the  discretization errors T ( k, sat isfy i i 1 

( k = O ,  -.. ,N-1) 

( i  =k+l,  o ,  N) 

( 1.16) 

1 '  where t h e  g ( k,  do not depend on h v, i 

- Proof: The proof is by induction on k . For i = 2,3, e ,  N , we have 



I For v = 1, the  t e r m  in  parentheses in  ( 1.17) vanishes  and for v = 2, . . . , N 

we have that every term becomes equal  to 

. I  

and ( 1.16) is proved for k = 1. 

If we assume ( 1.16) to be  true for k < N-1, a completely analogous 

procedure permits u s  to pass t o  k t 1 and t h e  induction argument is completed. 

Corollary 1. 3: 

extrapolations the  discretization error becom\?s 

Under the  hypotheses of Theorem 1.2 we have that  after k 

( k )  :ktl 'k+2) 
t Q(hl 

( k) 
A hlu- 'i =Ahlektlgktl ,  i i 

k = 0, .  . . ,N-1  

i = k, ..., N ( 1.18) 

with 

Proof. 

From (1.14), for v = k t l  we obtain 

Formula ( 1.18) is the  same as  ( 1.16). 

-'kmPk t1 

-1 

i-1 " j t l ,  i-1' i-1 -1 

which proves ( 1.19) . 
11. In certain very important special cases, (1.19) can be written more 

explicitly. For instance,  i f  

-12- X68 7 



r z r  ( i  =1, N) i 
(1. 20) 

pv  = vpl ( v = l ,  - 0 ,N) 

then the g ( k) are independent of i and consequently p ( k )  = - p) -1 
v, i v, i v, i 

for all values of the  indices. Thus 

k-1 

-$( k+l) Pk 
(1. 21) k -$k( k t l )p l  

= (-1) r k 
= (-1) r 

The resul ts  of $10 and $11 are related to Theorem 1 in  Bulirsch and Stoer 

[ 19641 ; Theorem 1. 2 contains one of the cases treated by Bulirsch and Stoer, 

while t h e  resu l t s  of $11 are contained in the i r  other case. Of course, t he  

d iscuss ion  of $8 and $9, which allows the bas i c  solutions to be in different 

l inear spaces is new. The general  algorithm of $10 is also new. W. Gragg 

h a s  communicated to t h e  author that h e  h a s  a similar algorithm (unpublished) . 
11. Deferred corrections 

1. A completely different technique for accelerating the  convergence of 

discretization algorithms is based on an  idea of Fox [ 19471, [ 19501 , [ 19621. 
( *) 

The corresponding general  procedure h a s  been developed in  Pereyra [ 19661 . 
Earlier contributors have been Volkov [ 19571, [ 19631, [ 19651, Bickley, 

Michaelson, and Osborne [ 19601, Henrici [ 19621 Lees [ i 96q  and Pereyra [ 19651. 
9 Y 

Let u s  d i scuss  the  basic idea when applied to t h e  problem (1.1). Since 

* From now on t h i s  paper will  be  referred to as P.  
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we know the  expansion (1. 3 ) ,  it seems appropriate to u s e  th i s  information in  

order to improve our approximate solution. A way of doing t h i s  is to replace 

t h e  higher derivatives of the  solution by sufficiently accurate difference 

approximations. In th i s  fashion we will  obtain a more complicated b a s i c  

method for which, i n  more general  si tuations,  we may not have sufficient 

theoret ical  results. 

solve ( 1.2) and then to feed back th i s  approximate solution into an  appropriate 

difference approximation to the  right hand s ide  of ( 1. 3 ) .  Hopefully, solving 

( 1. 2) with th i s  new right hand s ide  will  yield an improved solution. 

Another possibil i ty,  and t h i s  is F o x ' s  idea,  is to first  

Passing now to our general problem ( 1.2'  ) with the  expansion ( 1.3' ) 

we will  d i scuss  a method of deferred corrections which will  allow u s  to obtain 
- 
P 

1' P 2  - P1) 
p1 from a n  h -solution an h solution with 6 = p + min ( p  1 

2. The procedure we are  going to present will be cal led the  one-step 

l inear  deferred correction for operator equations ( L. D. C. ) . 
We assume that  there exists an operator S such tha t  

0 
A h 1  F u - S (  U) = O(hp'k) 2.1) 

where U is a p 1 - approximate solution of ( 1.1' ) and p* = min( p 1' P2 -P1) 

Then 

p1 U = U - h  e* 
1 

is an approximate solution of ( 1.1' ) a€ order 6 = min ( 2p p2) . Here e* is 

t h e  solution of 

1 

I 

Q h  ( W e *  = - S ( U )  . ( 2.3) 

For t h e  proof of t h i s  statement see P. l % m - e m  3.1. 
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In problem ( 1.1) we can take 

h-2 2 
[S (Y) ] .  '= -- 6 f (Xi ,Yi )  

1 12 

which h a s  a l l  the  desired properties. 

Observe tha t  in order to  obtain th i s  improved solution we had only t o  so lve  

t h e  l inear  problem ( 2. 3 ) ,  which is of the same "size" ( same h )  as  the 

original one. 

It is a l s o  clear tha t  i f  Newton' s method was  used for t he  solution of 

( 1.2' ) then ( 2. 3 )  h a s  the  same structure as  a Newton iteration. A l l  t hese  

remarks shows tha t  it is rather economical t o  gain p* extra orders of 

accuracy by means of th i s  method, whenever t h e  computation of S (U) is not 

very cumbersome. 

An iterative deferred correction ( I .  D. C. ) procedure has been a l so  des-  

cribed in  P but s ince  its application presents  severa l  new problems we prefer 

to d i s c u s s  it in  a separate  publica" Lion. 

111. Incomplete nested i terations.  

1. In solving problem ( 1.1' ) by means of ( 1.2' ) we typically find 

severa l  nested sequences,  which are generally generated by means of iter- 

ation procedures. It h a s  been observed' *)that it is not always necessary 

t o  carry out t he  inner i terations t o  completion. 

In th i s  sect ion we give a sufficient criterion for stopping the  inner 

i terat ions without perturbing excessively the final resul ts .  

2. We now descr ibe the different i twat ions.  

*Cf. Douglas [ 19611, Henrici [ 19621, Pereyra [ 19651 , [ 19661 , and Ortega 
and Rockoff [ 19651. 
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( a )  The first level iteration, 

for a sequence of decreasing 

U ( h )  and that 

U( h) 

11, corresponds to  solving 

ah( U) = 0 ( 3.1) 

h .  We assume that  (3.1) h a s  a unique solution 

- A  u = O ( h ) ,  P p > O .  
h 

( b )  The second leve l  iteration, I 

l inear  problem ( 3.1) for each  h . We concentrate on l inearization methods 

and more specifically on Newton 's  method, i. e. : for a given ini t ia l  value 

corresponds t o  the  solution of t h e  non- 
2 '  

I is the iteration vo' 2 
I 

'h ( vi) ( vi+l - vi) = - 'h ( vi) ( 3.2) 

We assume that t h i s  iteration is defined and that  t he  V. converge to U ( h )  as  

i - + m .  

( c )  In many problems the  l inear equation ( 3. 2) will a l so  have to  be solved 

by an  i terative procedure, 13. For instance,  i f  ( 3 .2 )  is a large system of 

l inear  equations some of t he  standard i teration techniques may be used, 

generating a sequence W.' 

1 

which we assume, for j - co , convergent t o  1t1 

Wi+l - - Vitl - Vi , t he  exact  solution of ( 3.2) e 

3. For an equation G( u)  = 0 we define its residual  for V E  D , as 

r = I h v )  II ( 3.3) 

If u is a solution of G( u)  = 0 then r = 0 .  For a given h we would l ike 

to control the i terations I 2 

equations (1.1' ) and ( 3. 2) for t he  success ive  iterates. 

and I3 by inspect ing only the  res idua ls  of 

In P we have already studied the effects of prematurely stopping the  
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i teration I There we showed that, i f  @ is s table ,  in  order to obtain a 

P U( h) such tha t  c( h)  - Ahu = Gjh ) it is sufficient tha t  ah ( U (  h))  .=O( h ) , 
regardless  of how c( h) h a s  been obtained. 

2. h 
z P - 

In  anticipation of future needs we will a s k  that  the  residual  of 

@ (c( h) )  

U(  h) - U( h)  does  not interfere with the  asymptotic expansion of e( h) . In 

fact, i f  we know tha t  the  exact  solution U( h) of ( 3.1) sa t i s f ies  

be of the order hq , with q 2 p This wil l  ensure tha t  the  error 
h 

# 

) 
p V  'Nt1 

N 

v=1  
e ( h )  = U ( h )  - A  u = e h t O j h  

V 

and that 

@ j c ( h ) )  - ah( U(h))  = Ojhq) 

then the  mean value property and (3 .4)  imply tha t  

M( G( h) ,U( h)) h)  - U( h)) = O(hq) 

and the  stabil i ty of M proves tha t  

C ( h )  - U(h)  = O(hq) e 

From the  asymptotic expansion for e( h) and ( 3 . 5 )  we obtain 

1 -  p V  'Nt1 
N 

u =1 
G ( h )  - Ahu = 2 e h t Q ( h q ) + O ( h  

V 

( 3.4) 

( 3.5) 

( 3 . 6 )  

4. Recalling that  all t hese  results are independent of the way in which 
& 

U( h)  h a s  been obtained 

To do  this we will  study 

3 '  we wil l  now seek  a stopping procedure for I 

the  behavior of t he  sequence {Vi} generated by 
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where t h e  residual E ,  = 11 &i 11 satisfies certain conditions. 

r e su l t s  are  contained in the  next theorem which is a slight variation of 

Mysovskikh' s theorem ( cf. Kantorovich and Akilov [ 19641, Chap. XVIII, p. 717) . 

The precise  
1 

Theorem 3.1 

Banach space D into the  B -space E .  

and a sphere Q = {x: 11 x -  x 11 < r } there exist Gonstants B, qo, and cy < 

that  the  folloNing conditions are satisfied: [ f '  ( x ) ]  exists on i2 and 

Let f be a twice continuously differentiable operator mapping the  

Let us  assume that  for given xOc D, lo€ E, 

- such - 0 o =  
-1 

0 -  

and 

Then the  iteration 

f l  (x . )  1 (xi+l -xi) = - f (Xi )  -I- Zi 

is defined for all i > 0 .  Here ei is such tha t  - - - 

and y , H. are defined recursively by 
1 - 

2 H.  .= H 
1 i -1 

-18- 

( 3.10) 

( 3.11) 

(3.12) 

(3.13) 

( 3.14) 

( 3.15) 

( 3.16) 
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For any choice of &, satisfyinq ( 3.15) the  sequence {x. 1 converqes to a 

solution x*c S2 of f (  x) = O  . 
1 1 

The speed of converqence is qiven by 
0 -  

Zi-l  U 

( 3.17) 
0 

Proof. First of all we have that 

and thus x E S2 . 1 0  

Since 

we obtain 

and thus  

Now i f  we define 

and 

2 2 2 H = B  q K = B  q K H  = H o < l  
1 1 0 0  

E = c Y H ~  1 1 1  

then  we have reproduced t h e  conditions of the  theorem for t h e  index i = 1.  

Suppose now that  ( 3.16) and the  est imates  for IIx - x  11 and I I f (  xi) 11 i i-1 

a re  valid for i = 1,. . . , k . 
We have as before 
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But 
k-I 

and 

There fore 

and 

k 
2 -1 

'k = 'bHo 9 

Writing th i s  inequality for a l l  the  indeces between 0 and k ,  and adding 

them up we get: 

and hence x E i2 k t l  0' 

Also, for any p 2 0  

which tends t o  zero for k - 00 s ince  the se r i e s  is convergent by hypothesis.  

Thus, {x } is a Cauchy sequence and there  exists X*E i2 such that  
k 0 * * 

x -. x . It is c l ea r  tha t  x is a solution of f (  x) = 0 .  k 

If we let p - co in  t he  above inequality we obtain 

which is (3.17) . 
In order to apply th i s  resul t  to  problem ( 3.1) we  first observe tha t  con- 

dit ion ( 3 . 8 )  is jus t  the  uniform stabi l i ty  of 
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procedure cons i s t s  in  finding the  values of the  ini t ia l  constants  B, cr, and K ,  

and a sui table  V i n  order t ha t  (3.11) and (3.13) be fulfilled. Once t h i s  h a s  

been done we can compute E 

0 

and then start the  i teration I3 in  order to 
0 

so lve  ( 3.2) (for i = 0 ) .  The iteration I3 will  be stopped when 

( 3.18) 

and then we will  t ake  as the  next i terate 

1 '  v l = v  tG 
0 

H 

W being the last i terate  in ( 3.18). With t h i s  we can  continue the  recursion 1 

computing success ive ly  

E i = aqiHi  ' ( 3.19) 

and a "w from I satisfying ( 3.18) for the  subindex i . We will stop when i t 1  3 

( 3.20) 9 q i  2 Ch 

where C is a s m a l l  constant. 

If we are interested in  solving a general  system of nonlinear equations 

it is worthwhile to observe that  from (3.17) we obtain the error bound 

with very little extra computation. 

( 3.21) 
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IV. Mildly nonlinear elliptic boundary value problems. 

1. Generalization of problem ( 1.1) to  two dimensions gives  

A U ( X , Y )  = u  + u  = f ( x , y , u )  ( X , Y ) E  Q xx YY 

f U ( X , Y , U )  2 0 ( X , Y ) E  Q, l u l < . o  , 
( 4.1) 

where is a bounded, open, plane region and its boundary cons is t s  of 

continuous closed curves. A s  stated,  problem ( 4.1) h a s  a unique solution 

u( x, y)  which is i n  @( i) A C (2) (i9) ( cf. Parter [ 196EJ) ( :k) . 
The structure of solutions of (4.1) without restrictions on f h a s  been 

U 

recently studied by Greenspan and Parter [ 19651, and Parter [ 19651. Under more 

stringent regularity conditions on f ,g  and the  boundary curve 319 it is 

possible to ensure, a priori, that  u E C(') (i) , p > 2 .  For s o m e  interesting 

regions with piecewise analytic boundaries having special kinds of corners 

it is possible to subtract off singularities appearing in the  solution and its 

derivatives ( a t  l ea s t  in the l inear c a s e ) ,  thus obtaining an associated problem 

with a regular solution ( cf. Volkov [ 19631 ) . In th i s  section we will  be 

mainly concerned with the application of the  highly accurate methods described 

in  I and I1 to  problems of the  form ( 4.1) with solutions of class 

C ( a ) ,  N ?  2. 
2N - 

2. Let u s  f irst  consider the  case of a general, smooth boundary. A s  

is customary, we take a square mesh of width h covering . Let  

* Since very little experimentation with these  methods have been published, we 
emphasize that a l l  the resu l t s  of th i s  section apply to the  linear c a s e s  
(Lap lace ' s ,  Poisson 's  equation, etc.) 
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- 
6 = ( P1,. . . , P ) be the set of mesh points contained in 8 ,  ordered in some n 

arbitrary but given manner. We subdivide 63 into three classes. The set of 

regular or interior points R( h) containing those  mesh points whose four 

c loses t  neighbors in  the  x and y direct ions belong t o  i ;  t h e  set of 

irreqular points I (  h)  containing those mesh points which are  in  & but not in  

R( h) , and finally the set B( h) 

points belonging to  88. Sometimes t h e  neighbors of a point P in  R( h)  

E, PN, Pw, and P . will  be called P 

of boundary points, consis t ing of those  mesh 

See Figure 1 €or an  illustration. 
S 

X 

Any function from 6' to  R will be called a mesh function. 

For any given mesh function V( P) V we define the following finite P 

difference operator 

For P E  I( h) we could choose either 

( @,(V)Ip = g ( Q )  P E  I ( h )  ( 4.2' ) 
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where Q is t h e  c loses t  boundary point in the  x , y  directions,  or  else the 

more accurate  interpolation formula 

P E  I( h) ( 4. 2 " )  

is the c loses t  neighbor of P on the same line 'NB where Q is as before, 

dist ( Q y  ') . For instance,  i f  P = P in Figure 1 then E as Q ,  and u ( P )  = 
h 

PNB = P ,  

However, as was observed by Wasow [ 19551, t hese  boundary approximations 

will not generally be good enough to provide an asymptotic expansion of the 

type (1. 5 ) ,  even if  the  exact  solution is sufficiently differentiable. 

W a s o w ' s  paper it was  shown, on an  unidimensional example, that, if the 

boundary was not treated carefully e( h) was not differentiable with respect  

t o  h ,  and thus one could not expect an  asymptotic expansion in  powers of 

h .  

boundary then one could recover the asymptotic expansion. 

of view of Stetter' s theorem, and always in  the  case of sufficiently smooth 

solutions,  we see that  the  difficulty with the boundary stems from the values  

a( P) , which depend on the mesh, appearing in the  expansion ( 1.3' ) for the  

loca l  discretization error. In fact, let P E I(h) and assume tha t  (4. 2 " )  is 

used with P in place of P 

above ( see Fig. 1; interpolation in  other directions produces similar formulas) .  

Then for any sufficiently differentiable function v (  x, y )  we have 

In 

However, it was  shown tha t  i f  higher order interpolation were used at the  

From the  point 

l 

E 

Q E 88 t o  the right of P ,  and cy( P) as defined NB'  w 

, 
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11 - - @( P) ( a( P) -1) vxxx( P) - . . . 6 

and we see tha t  for t h i s  part of the expansion ( 1. 3 ’  ) the  operators F . (  v)  

are  not independent of h and Se t t e r ’  s theorem does  not apply. 

3 

3 .  One way of avoiding t h i s  difficulty is t o  take  higher order interpol- 

ation formulas,  using only points belonging to 

construct interpolation formulas using the c loses t  neighbors of P on the  plane 

mesh and perhaps some on the  boundary 8 19. However, except for the lowest 

orders,  such as Mikeladzes‘ formula ( cf. Panovl19631 , p. 38) , it is not simple 

t o  construct bivariate interpolation formulas for a general  distribution of points 

and, when possible ,  it is difficult to assess the  order of the  discret izat ion 

error. A feasible  procedure is t o  use  Newton’s  interpolation formula in one 

dimension, i. e. ,  t he  generalization of ( 4.2”) t o  higher order accuracy. 

to obtain a n  accuracy of order h “l we need to take P, Q and the  S left,  

( say)  neighbors of P , i n  order t o  form 

Ideally we would l ike t o  

, 

Thus, 

which for V E  $ )  h a s  t h e  residual 

indicates  t h e  q t l  partial derivative of v in the  direction of the  ( ii.t.1) where v 

interpolation . 
X 

Again we are faced with a difficulty. It is simple t o  see that  for certain 

va lues  of and a we will have 
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l 

and the matrix cp. ( V )  will  not be diagonally dominant. In Volkov [ 19571 it 

is proposed t o  take a multiple of the  bas i c  s tep  h, 5 ,  i n  order t o  make the  

sum in ( 4.5) l e s s  than 1, and it is shown tha t  under certain geometrical 

conditions on the  region r0 t h i s  can  be done for a l l  h and P E  I( h) . The 

inconvenience of t h i s  procedure is that  even for tj s m a l l ,  s ay  6, and very 

good regions, like ci rcles ,  it is necessary to take  the  s t ep  h unreasonably 

s m a l l  in  order to have enough points t o  carry the  process  through. 

h 

In some of our numerical experiments we have used the interpolation 

formula ( 4. 3 )  with the  bas i c  s t e p  h ,  disregarding ( 4.5) . 
point of view we cannot, i n  t h e s e  cases, apply the known re su l t s  on conver- 

h '  gence of U( h) t o  u ,  etc. which depend on the  diagonal dominance of 

On the  other hand the  numerical resu l t s  seem t o  indicate tha t  t h e s e  properties 

still ho Id. 

From the  theoret ical  

1 

A modification of the  difference correction, which resembles  Fox' s 

original method, gives  quite good resu l t s  even when the  bas i c  method u s e s  

t h e  simple interpolation formula ( 4. 3 ) .  This will  be d i scussed  in  $ 6 .  

If the  region 8 is rectangular, having grid l ines  for s ides ,  then none of 

t h e s e  difficulties appears s ince the  set I( h) is empty. Nevertheless,  

because  the corners,in t h i s  case it is not e a s y  to ensure a priori the sufficient 

differentiability of t he  solutions. 

4. Going back t o  ( 4.1) we see tha t  t he  operator 
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( 43 maps @ ( ~ ) n @ . ( & I ) n { u : u = g o n 8 & I } i n t o  2 @ ( a )  W e t a k e  D = @  2Nt3 

and E = c 2Nt1 ( 9 ) 

( 4. 2) and either ( 4. 2")or ( 4. 3). Both @ ( V) (for (4, 2")) and CD ( V) ( for( 4. 3 ) )  map 

the  set 'Ir of mesh functions over p into itself. We t ake  in  Dh = Eh = R n the  

infinite norm 

The discrete  approximation h a s  been already described in  

h lh 

With t h e s e  definit ions we 
PE P 

can write expansions of t h e  fern1 (1. 3' ) for ah and ip for each  V E  D , lh ' 

t O(h2Nt1) P E  R(h) ; ( 4.8) 

P E  I( h) ( 4.9) 

where the  derivatives a re  taken i n  the direction of the  interpolation. 

if we take  6 = 2N in  ( 4 . 3 )  then 

Finally 

By using ( 4 .8 ) ,  ( 4. 9'  ) and assuming tha t  @ is s table  and convergent 

of order 2 we can apply Stetter' s theorem, obtaining an asymptotic expansion 

( 1.5) for t he  discretization error. These assumptions are certainly sat isf ied 

lh  
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when I( h) is empty, or when Volkov' s procedure is used to obtain diagonal 

dominance i n  @ '  h '  

In order to apply the  procedure SE of Section I. 10 we have to define 

'h 
of I. 8 .  Let us  take  a bas i c  mesh s i z e  h and define 1 

j 
t he  "projections" 

h .  = 2 -1 h i. e. r = f . With h there is associated an n the  number 3 1' 

of points in P( h . )  . and in particular 

P( hl) is contained in all t he  refined meshes. Now we can  define +h ( V )  for 

V € D h ,  V = ( V l ,  ..., Vn ) as 

j 1 '  

Moreover, i f  i > j then P (  h . )  3 P( h . )  
J 1 J 

j 

j j 

$ ( V )  = W  = ( W l , e o e  W ) ,  ( j  = 2 , . - * , N )  
1 ' n  

j 

( 4.10) 

with W = V( P ) , P E P( h . )  being the  s a m e  point in the  plane a s  

Pk E P( hl) 

to D 

J 

( V )  is the restriction of the mesh function V 

k S k k S 

In other words h 
j 

. A s  an example consider the quarter circle in Fig. 2, h =-, 1 h = - 1 1 3  2 6 .  hl 

There n = 11, n = 35. We denote by Pi t he  points in I=( hl) and Q .  the 

Ones in P ( h Z )  Also R(hl) = {P6), I ( h l )  = {P , P , P 

3 

} . If U( h . )  
7 9 10 1 

1 2 

s ati s f ie s 

i 

(see 111. 3 )  then, a s  in I. 10, we can define 

( 4.11) 

( 4.12) 

qk u[ k-1) (, k-1) u ( k )  - - - u,-1 ( k - = l , .  .. , N ;  i = k t l , .  . ,Nt1)  (4.13) 
i k 4 - 1  

and the result of I. 11 applies. Recall that  all U! k, E D , i. e. : we obtain 
hl 1 
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more accurate  approximations only at points belonging to  the coarsest  mesh. 

?he solutions of ah( V) '= o( h ) will  be obtained by a combination of 

Newton' s method and point success ive  overrelaxation, using the  resu l t s  

of I11 as the  stopping procedure. 

The Newton iteration is given in ( 3. 2) and it will  be stopped when 

On the  other hand, i f  we consider the matrix @ '  ( V . )  = Di - E .  - F h i  1 i '  

where D is diagonal, and E 

upper triangular then, ( 3. 2) c a n  be approximately solved for W 

by means of the  iteration formula ( I  ) 3 

and Fi are  respectively strictly lower and 
i i 

- 
i t 1  - 'it1 - vi 

-1 dJtl) = (I-W.L.) {( 1-0.) I t  W . U . }  d,J) t 
it1 1 1  1 1 1 1t1 

-1 -1 where 1 <a. < 2 ,  and L. = D .  E U .  = D .  F . 
A s  we sa id  in  I11 ( s e e  Theorem 3.1) , I 

1 1 1 i '  1 i i  

will  be interrupted when 3 

It is wel l  known tha t  a bound B for 11 [ @ I h (  Vi) ] -' 11 is 

( 4.14) 

( 4.15) 

( 4.16) 

where d is the  diameter of the set rD This bound B ,  together with K ,  

a uniform bound for f , provides the necessary  da ta  to compute H 

( see Theorem 3.1). 

uu 0 
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5. For the  l inear deferred correction L.D.c. described in  11. 2 we need 

t o  determine the  operator S( U)  of ( 2.1). Here p" will  be 2 and 

( 4, t u ( 4, ) ( assuming tha t  we have used with = 5) . 1 
Y lh F ( u )  = -  1 

We take  S( U) as  the appropriate combination of symmetric fourth 

order differences of U at  all points at which th i s  is possible,  and 

unsymmetric formulas at the remaining points. 

and for h =x , we have that  at Q16 we can  use  symmetric fourth 

differences in every coordinate direction while at Q we cannot. However, 

six point unsymmetric formulas, using the neighbors t o  the  left and below can  

be applied. For these  and other necessary difference approximations we refer 

to Ballester and Pereyra [ 19661. 

For instance,  in  Figure 2, 

1 

30 

6. As we mentioned before it is a l so  possible t o  use  the  boundary inter- 

polation (4 .  2") i f  t he  Lac. is reiterated. 

corresponding to points P E I (  h) becomes ( cf. ( 4. 9) ) : 

In th i s  case, the  part of F1( v) 

( 4.17) h F1( V) ( P) = - $ a (  P) ( v"( P) - 5 ( l-a( P)) v"' ( P)) 

where the  differentiation is in  the  direction of the interpolation. 

tha t  s ince  F ( v )  is not independent of h the  theory of 11.4 no longer 

applies.  We can, of course,  give a n  O(h  ) discrete  approximation to 

4 
F ( v) for any function V E  C , namely, 

Observe 

1 
2 

1 

- 2  
S(Ahv). = - - h [ (  7 4 - 5 ~ )  v 0 - (  1 2 t 1 8 ~ ) ~  2 4 ~ ~  t 2( 4-7a) v -2 -3 12 - 

t 3 ( c ~ - l ) v  - 4 ]  . ( 4.18) 

4 
Using ( 4.18) as S( U),  taking U(O) as  the solution of ah( V) = O ( h  ) and 
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iterating according t o  t h e  formulas 

( 4.19) 

u( itl) ( i )  2 ( i )  = U  - h e  

we have obtained, a f te r  a few s teps ,  r e su l t s  equivalent to the  ones  obtained 

by means of the algorithm of 9 5. 

V. Numerical examples. 

1. In what follows we descr ibe some of the  numerical experiments we 

have carried out on the CDC 3600 Computer at t h e  University of Wisconsin 

Computing Center. 

t he  methods of Sections I and 11. Numerical r e su l t s  for two-point boundary 

value problems solved by means of L nC.  and LD.C can  be found in Pereyra 

[ 19651 and [ 19661. 

They refer to  the  problem d i scussed  in Section I V  and 

The basic  program so lves  a large system of nonlinear algebraic equations 

by Newton ' s  method. 

equations is solved by point overrelaxation. 

in order to find an optimal value for the overrelaxation parameter w . 
comparison of the various methods is sens ib le  only when the s a m e  h and w 

are involved ( cf. Ortega and Rockoff [ 19651) . 

At every Newton s t ep  the  result ing system of l inear 

N o  great effort h a s  been made 

The 

For SE we decide a priori how many extrapolations we want t o  make 

and from t h e  given b a s i c  s tep  h we deduce the  smallest h needed. We 

solve first for that  h using as an ini t ia l  approximation a l inear interpolation 

of the boundary values.  For the larger h ' s  we u s e  as  start ing values the 

solutions just obtained, considered at the relevant grid points. It may be 

1 

-32 -  X68 7 



of interest  t o  proceed in the reverse direction, beginning with the coarsest  

mesh, and using that solution and interpolating to f i l l  the gaps,  in  order 

t o  s tar t  the  iteration for t he  next mesh. Another possible  modification is t o  

u s e  a different type of refinement, ,i. e. some sequence decreasing slower 

i 
than [$\ . 

2. Problem 1 Let be the  quarter of the  unit c i rc le  x 2 2  t y 5 1 ;  

x , y  - > 0 .  Consider the  problem 

2 
u = 30/ (x t2yt l )  on as . ( 5.1) 

2 The exact solution is u( x, y) = 3 0 / (  x t 2 y t l )  ; a lso  K = 2 . 
Problem 2 Same equation as  in  Problem .1 . ds the  square 0 5 x, y 5 1. 

This boundary value problem h a s  been solved numerically in  Greenspan [ 19641 

with an O (  h ) method. 2 

Problem 3 as in Problem 1. Equation 
3 
L 

Tr 2 2 u  
Au = - ( x  t y  ) e 2 on B 

Tr Tr u = -2 log ( s i n  (-- x y t  7)) on a &  ; 2 

K = n2/2. The exac t  solution is t h e  boundary function extended to . 
Problem 4 as in  Problem 2. Equation as inproblem 3. 

3. We descr ibe now the  numerical resul ts .  In examples 1 through 4 

t h e  di) are defined by 
j 

* 
where u is the  exact solution. 
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Example 1 Solution of Problem 1 by means of the S. E. method of 

Section I with k = 3 and using 6-th order interpolation at the boundary 

( see (4 .3) ) .  The numerical resul ts  for the  two bas ic  mesh s i zes  h 2 1 8910 

are given in  Tables la  and lb  . The lack  of diagonal dominance a t  points 

in  I( h) did not create any noticeable difficulty. 

Example 2 Solution of Problem 3 by the same method used in 

Example 1. Numerical resul ts  are given in  Tables 2a and 2b. Again no 

difficulty appeared because of t he  lack of diagonal dominance. 

is seen even more clearly than in Example 1 the h , h , h 

the  successive extrapolates, despi te  the small difference between the  two 

bas i c  meshes. 

boundary interpolation no such an improvement was obtained. 

in  th i s  c a s e  the corresponding computation t i m e s .  

In th i s  example 

2 4 6  improvement of 

Let u s  remark that  when performed without t he  6-th order 

We a lso  give 

1 
A 4-step extrapolation with hl =s Example 3 was  used on 

Problem 2. The numerical resu l t s  are given in Table 3a. Also a 3-step 

was performed. The corresponding numerical 
1 

extrapolation with h = - 
1 10 

resu l t s  are given in Table 3b. 

Example 4 Problem 4 was solved: 

1 
a )  Using a 4-step extrapolation with h = - 1 8 '  

U14) did not come out with the  expected precision. The only 

reason we can suggest to explain t h i s  behavior is tha t  t h e  accuracy required 

in  the inner iteration was  beyond the  machine' s capabili ty ( i. e. word length 

in  simple precision). 

plete" t o  furnish an accurate final result. 

In such a c a s e  the  inner i terations will  be "too incom- 
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1 b) Using a 5-step extrapolation with h = - 

Here the phenomena observed in ( a )  is more accentuated. 

1 4 -  

is obtained with the expected accuracy ( and it is better than U( 4, in  ( a)  ) , 
( 3) 
3 .  while U5 ( 5, is less accurate than U( 4, and just  sl ightly better than U 

We attribute th i s  to  the same causes  as  in ( a ) .  It is necessary t o  observe 

tha t  for h = 

equations ( see ( 4.2) and ( 5. 2) ) . 

4 

4 

the  result ing system h a s  3969 quite complicated nonlinear 
1 

5 5 2  

c) Using a 5-step extrapolation with h = $ 1 

This gave the solution at the center of the square with an  

-8 
absolute  error less than 10 i n  about 40 seconds of CDC 3600 computing 

t i m e .  

The numerical resu l t s  are  given in  Tables 4a, b, and c respectively.  

In th i s  c a s e  there was no trouble with the highest  order extrapolate. 

Example 5 Solution of Problem 1 by means of L. D. C. procedure of 11. 2 

6 with h interpolation at the boundary. The iteration of 11. 6 is not 

theoretically necessary  in  t h i s  case;  however, when applied, the second 

iteration g ives  some improvement over the  first,  especial ly  for the  smaller 

h '  s. 

of IV. 6 we denote by 

We attribute th i s  to  the elimination of round-off. Using the notation 

d i, the relative error 

We count each  iteration (4.18) as a Newton iteration. 

2 Example 6 Solution of Problem 1 by means of L.D.C. with only h 

boundary interpolation and iteration 11. 6 .  

and the numerical resu l t s  are given in Table 6. 

The notation is as in  Example 5 

70 still 
( 5) For h = , U  
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-6 gave some improvement: &( 5, = 10 , with 150 extra SOR iterations.  

Example 7 Solution of Problem 4 by L. D. C. and i teration 11.6. 

Numerical results are  given in Table 7. 

VI. Comparisons between the different methods 

Two basic  requirements in the  solution of boundary value problems by 

and the  desired "minimum finite differences are the  desired accuracy e, 
definition" of the numerical solution, i.e. the  minimum number of points 

( c o a r s e s t  mesh) at which the solution is needed for pract ical  purposes. 

These requirements, and the  avai lable  computing machinery will 

generally be the main  guidelines in  choosing a method of solution or, 

ultimately, in deciding i f  the  problem can be solved at all. The two kinds 

of methods of high order accuracy we have described and used in  the former 

Sections have particular character is t ics  that  make  them convenient in a 

wide range of applications.  

While our numerical examples are  significant by themselves  we have in 

mind in th i s  discussion possible  applications t o  problems in  higher dimensions: 

three dimensional e l l ipt ic  boundary value problems, parabolic equations,  

etc. for which storage and computation t i m e  are even more cr i t ical  factors 

(cf. Forsythe and Wasow [ 19601, pp. 11-14 for some interesting figures and 

predictions for t he  case of linear equations; seven years  after t hese  figures 

have been published three dimensional problems s t i l l  cannot be solved ei ther  

very accurately or in too  much de ta i l  ). 

-7 If high accuracy is required ( s a y  ( =  10 ) but not necessar i ly  high 

not too s m a l l )  then it is c lear  tha t  t he  usua l  definition ( i o  e. bas ic  mesh h 1 
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2 crit icism about the  standard O(h  ) method is very much valid. In fact  we 

see from Table 4a tha t  in  order to reduce &( i 

( 64000 points) which would give an 
1 

would need to  take  a mesh h < - 800 

accurate  but exaggeratedly detailed discrete  solution. On the  other hand, 

1 
by using three extrapolations and a f inest  mesh of 64 (/-4000 points) we 

-7  
to l e s s  than 10 we 

have obtained the solution at 49 points with the required precision. If we 

need not only high precision but also good definition then with some extra 

work the LTXC. procedure g ives  us t h e  solution at 900 points with accuracy 

M O - ~  by using h = 32 ( s e e  Table 7 ) .  In conclusion, S.E. is of simpler 
1 

application than L.D.C. and in  principle can give more accuracy for a given 

basic mesh. However, as we see from some of our computation t i m e s ,  the  

most significant computation in  S. E is the solution of the bas i c  problem for 

t h e  f ines t  mesh. Thus it is fair t o  compare three or four extrapolation steps 

t o  one application of L.cIC. for the f ines t  m e s h  used in  SE. In th i s  case, at 

l ea s t  in our examples, the precision obtained is comparable while we obtain 

much more de ta i l  from L.D.C. 

Another factor  which has  not been considered here but which can be a 

source  of difficult ies is the  ill-conditioning of the system of equations for 

small  mesh s i zes .  This h a s  been pointed out in Fox [ 19501 and it is known 

t o  generate difficult ies in the solution of differential  equations of higher 

orders,  such a s  the biharmonic equation. 

for keeping the s t ep  s i ze  reasonably large. 

difficulty is intrinsic t o  the  problem it is unlikely that  it will  be solved by 

t h e  appearance on the  market of faster and larger computing machines. 

This is then still another reason 

Moreover, s ince  here the 
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It is our hope that the  iterated deferred correction procedure 

will  give both definition and accuracy for any given reasonable specification, 

thus  providing a more flexible tool for the accurate solution of multidimen- 

s ional  boundary value problems. 
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Table l a  

2 30 Method: Successive extra- 
polations; 6-th order 

X boundary interpolation. 

A u = u ,  U =  

( xt 2ytl )  

i 

i 
h 

n i 

w 
i 

Newton iter. 
Total SOR iter. ) 

i 

n 
i 

w 
i 

Newton iter. 
(Total SOR iter.) 

1 

1 
10 

67 

- 

1. 3 

1. 5 x 1 0 ~ ~  

1.5 x l om3  

4 (  28) 

1 

1 
20 

292 

- 

1. 5 

4.3 x ~ o - ~  

5.2 x ~ o - ~  

4 ( 171) 

Table l b  

1 
8 
- 

41 

1. 3 

2. 3 x 1 0 - ~  

2. ~ X I O - ~  

4 ( 43) 

2 

2 

1 
16 

18 3 

- 

1. 4 

6.7 x10m4 

3 

1 
40 

1214 

- 

1. 5 

1. I X  loe4  

1. 7 X 

6 ( 472) 

1 
32 

770 

1. 5 

1. 7 x 

1. I X  

7 ( 306) 
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Table 3 a  

Method: Successive extrapolations. 
2 30 

A U = U  , u =  
(x+2yt1) 

i 

i 
h 

n i 

w 
i 

Newton iter. 
Total SOR iter. ) 

1 

1 
8 

49 

- 

1. 7 

2.3 x 1 0 - ~  

2.3 x 1 0 - ~  

6 ( 4 8 )  

2 

1 
1 6  

225 

1. 7 

6. 7 x 

1.0 x 

3 (41) 

Time:  7 I 21" 

Table 3 b  

i 

Newton iter. 
Total SOR iter. ) 

1 

1 
10 
- 

81 

1. 3 

1.5 x 1 0 - ~  

1.5 x ~ o - ~  

4 ( 3 6 )  

3 

1 
32 

961 

- 

1. 8 

1. 7 x 

1. 9 X10-6 

4 ( 6 6 )  

2 

1 
20 

361 

- 

1.5 

4.3 x ~ o - ~  

5 . 2 ~ 1 0 - ~  

3 ( 9 7 )  

4 

1 
64 

3969 

1. 8 

4 .4  x 

1.6 X10-8 

5 (483)  

3 

1 
40 

15 21 

1. 5 

1 . 1 ~ 1 0 - ~  

8.0 X10-7 

10 (638)  

#68 7 - 41- 



L i  

cn 
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.. 
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X 

a-s -$ 
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co 
F . 
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Ln r- 
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0 
4 

X 
0 

N 

I 
0 
4 

X 
Ln 

4 

h 

d" 
9 
9 
Y 

r-l 
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co 
F 

4 

I 
0 
4 

X 
4 

m 

h m 
CP 

d" 
Y 

Ln P I 
0 
4 

X 
co 
f- 
. 

I I 
h 0 0 
co 4 4 

X X 

d" 

N 

d" 
d 

co 
I 
0 
4 

X 
9 

- 1% . 
9 

I 
0 
4 

4 X 
9 

N 

m 
I 

2 - Id" co 
X 

m 
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u * 
a, 
a a 
H 

4 

m 
a, 
a la 
4 

I 
a3 
I 

x 

Ln 

0 
4 

412 m 

4 

I 
0 
4 

rc) 

N 

9 
I 
0 
4 

X 
P 

--'IC0 X 

m 

rc) 
I 
0 
-! 

0 

N 

X I* 

m 

c 
0 

n 
cr) 
m 
4 
Y 

a3 

n 
0 
a3 * 
Y 

M 
4 

h 

a3 
a3 
a3 

* v 

4 

9 r- 
I I 

Ln 
I 
0 
4 2 2 
X X X 

a3 0 4 

a3 N 4 

m 
m I 9 

0 I 
0 4 

I 
0 

4 

X 
4 N N 

m 4 4 

X 
X m 
4 

* 
I 

M * 
I I 

0 
4 

4 0 2 

4 4 4 

X X 
4 M 

X 
m 
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Table 6 

Same problem and method as in  Table 5 ; h 2 -interpolation at the  

boundary. 

- 
h 

1 
2 

1 
4 

1 

8 

1 

- 

- 

- 

ic 
1 

32 
- 

2 . 1 ~ 1 0 - ~  6. 2X10-4 4. 3 x 1 0 - ~  

5 . 4 x i 0 - ~  1. 8 X10-4 6 .  7 x ~ o - ~  

1.4 x ~ o - ~  4. 7 x ~ o - ~  1. 6 X10+ 

4. 5 xio+ 

I I 

Table 7 

8 (132) 

2.1 x 

1. 7 x i 0 - ~  

5.2 x10-6 

2 . 8  X10-6 

2.5 x 9(  112) 

1. 7 x10m5 11 (576)  

8 (170) 

2. 5X10-6 1 9 (1011) 1 
I 1 

h Au = I T 2 2 2 u  ( x  t y  ) e  , u = -2 log ( s i n  IT (xyt s)) on 

Method: LDC iterated. 

5 . 4 x 1 0 - ~  

2. 6X10-3 

8. 2 X10-4 

5 . 4 x 1 0 - ~  

3 .  6X10-3 

6.1 X l o m 4  

7. 5 x i 0 - ~  

7. 4X10-6 

5 . 8 x 1 0 - ~  

4. 8 X 

3 .  OX10-6 

4. 3 x 

I & 3 )  r e w t o n  iter, 
Tct.SJR iter. 

l ( 3 7 8 )  
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Table 8 

w = l  w = 1.53 - 
Method I 

Method I1 

Method 111 

Method IV 

98 ( 9 8 )  28  ( 2 8 )  

4 ( 204) 4 ( 6 5 )  

15 (105) 11 ( 3 0 )  

25 ( 9 8 )  21 ( 3 0 )  

w = 1.8  -4 
71 (71) 

4 (148) 

14 ( 73)  

33 (72) 
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APPENDIX 

Bellman, Juncosa, and Kalaba [ 19611, Greenspan and Parter [ 19651, and 

Ortega and Rockoff [ 19651 have reported numerical experiments for t h e  problem 

U 
( *) A u  = e , u ( x , y )  = x  t 2 y  on t h e  boundary of the  

unit square. They generate t h e  nonlinear difference equations in  the  same 

way a s  described in Section IV. 

different schemes: 

Method I : 

Method 11: 

Greenspan and Parter gave resul ts  for two 

take  one Gauss-Seidel sweep per Newton iteration; 

solve the  l inear systems of Newton' s method by SOR. 

Ortega and Rockoff have investigated these  for varying values of the  

overrelaxation parameter and the  figures for Methods I and I1 in Table 8 

are from Ortega [ 19661 who graciously made them available to u s  before their  

publication. We compare t h e s e  two methods with our procedure (Theorem 3.1) 

for stopping the inner SOR iterations.  

convergence criterion of the  form 

Since t h e  previous authors used a 

( :k:k) -6 II vi+l - vi II 5 10 

( i n  the  notation of Section 111) , we have to modify the  convergence criterion 

given by Theorem 3.1. 

Lemma With the notation and hypotheses of Theorem 3.1, suppose that ,  

qiven e, we proceed as indicated by 

- Hi-1 ~ i - 1  - 

(3.19) until 

Ei-l < a &/4B . ( 1) 

= E/4B. Takinq a l so  and then before computinq V. we replace E 
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E .  = E then 
1 i-1’ 

ITitl - v. 1 II 5 E 

Proof: If Vi+l were computed exactly ( E .  .= 0) then we would have 
1 

rJ 
Let  u s  call Vitl to  the solution obtained by allowing the residual  to  be in 

norm at most as  large a s  5 . Then 
i 

vitl II 5 B Ile. II ZBE’’~  € / 4  . llvi+l - 1 

Finally ( 2) follows from ( 3 )  and ( 4 ) .  

It is c lear  from t h i s  proof snd Theorem 3.1 tha t  11 gj ( V  ) 11 5 is a h i  

more convenient convergence criterion than ( 2) , especial ly  considering the 

straightforward error estimation given by ( 3. 21).  

In Table 8 ( p. 44) we give the resul ts  of Method I and I1 as applied t o  ( *) 

with a s t ep  s i ze  of h = 0.1. For the inner i terations of Method I1 ( a:@) is 

used as a convergence criterion. 

For Methods I11 and IV we start with an empirical criterion for stopping 

t h e  inner i terations until  H < 1 when we can  switch to  the theoretical  

criterion of Theorem 3.1. 

reducing the  residual  of the  linear equations a t  the i-th Newton s tep  below 

E .  = 4 X ( 0. 25) , but allowing only a maximum of four SOR sweeps.  

Method IV we use  Method I which is known t o  be convergent, a s  a 

start ing procedure. The first figure in Table 8 indicates  the number of Newton 

0 

In Method I11 the start ing procedure cons is t s  of 

i 
In 

1 

i terations while the figure in parentheses indicates  t h e  to t a l  number of SOR 

sweeps.  
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